Vulnerability Detection - Fuzzing

Holistic Software Security

Aravind Machiry

Credits: Prof. Mayur Naik, UPenn

Fuzzing

e Automated test generation using random data.

o Generate effective test cases, primarily using random data.

Fuzzing: High Level Idea

Program

Input Execution

Detection
Oracle

§

Generation Control

Input Generation

e Generate inputs (mostly randomized) to be fed into the program:
o Random source.
o Mutating existing inputs.

o Basedonagiveninput grammar.

Execution Control

e Execute the program with a given input:
o Regular command line programs: execve and stdin.
o OS:System calls.
o Network programs: Send over network.

o Input file: Save the data into a file and provide file.

Detection Oracle

e Detection of interesting program behavior:
o Programcrash.
o Race condition.

o High execution time.

Fuzzing Success

|| | GCCBugListFound by RandomTesting(rotarzo)f [[[|

date open bug_id* bug type priority rev reported platform ' component | status date fixed(rev)(by) File modified (lines)
3/30/2008 35764 wrong P3 430 x86-32 target confirmed na
5/15/2008 36238 | crash P2 440 x86-32 | target fixed 08/10 138924(Pinski) reloadl.c(1)
6/17/2008 36548 wrong P3 136854 x86-32 middle-end fixed 08/22 139450(Guenther) fold-const.c(12)
6/24/2008 36613 wrong | P1 137045 x86-32 | target fixed 08/11 138955(Matz) reloadl.c(8)
6/25/2008 36635 crash P1 137122 x86-32 | target fixed 10/08 140966(Jelinek) cse.c(11)
71112008 36691 wrong | P1 137327 x86-32 middle-end | fixed 08/04 1) loop-niter.c(2)
8/13/2008 37102 wrong | P1 139046 x86-32 tree-opt fixed 10/17 141195(Macleod) tree-outof-ssa.c(95)
anamnna 27102 wwann D2 120044 vRA.22 | middia.and | fivad 0214 120004/ 1alinal fald_ranct ~ (11
open (837):
Title Repro Cause bisect Count Last Reported ~ Last activity
BUG: scheduling while atomic: syz-executo/ ADDR c done 1 4deth 1hegn 1hesn
fput i 4delh 1h3gm 1h38n
: shift-out-of-bounds in init_sb 1 2dedh 3h19m 3h19m
sleeping function called from invalid contextin _fdget pos 1 6dech 2d0oh 7ha1m
1 2de3h 2d02h 2d02h
INEO: task can't die in p9 client rpc (3) 4 1de1h 2d13h 2d13h |~
leak in j1939 sk sendmsg c 1 6d15h 2d15h 2desh
se-after-free Read in v412 ioctl (2) C error 1 9d14h 5d14h 4d11h
KASAN: out-of-bounds Read in do_exit 1 1ed 6d14h 4d14h ‘
memory leak in xfrm user rcv msg c 1 12d 8d0oh 12h54m
BUG: corrupted list in kobject add internal (3) € inconclusive 1 12d 8delh 6dech
memory leak in j1939 xtp rx 1ts syz 1 12d 8d02h 5degh ‘
INFO: task hung in port100_probe [4 error 3 12d 8d04h 8d03h
general protection fault in detach_extent buffer page a3

I CYBER

GRAND_CHALLENGE

Fuzzing Success: OSS-Fuzz

e Continuous fuzzing infrastructure hosted on the Google Cloud Platform

_ Scalable,
Modern‘Fuzzmg Distributed
Techniques i
Execution

AFL LibFuzzer

e 0SS-Fuzz has discovered over 17,400 bugs from 2016 to 2019 in many
large projects (e.g. openssl, llvm, postgresql, git, firefox)

Fuzzing: Gen 1 (Random data)

Program

(e e
Input Execution
Generation Control
Crash

(SIGSEGV)

/dev/random

Fuzzing: Gen 1

e Conducted by Barton Miller @ Univ of Wisconsin.

e 1990: Command-line fuzzer, testing reliability of UNIX programs.
o Bombards utilities with random data

e 1995:Expanded to GUI-based programs (X Windows), network protocols, and system library APlIs.

e Later: Command-line and GUI-based Windows and OS X apps.

Caused 25-33% of UNIX utility programs to crash (dump state) or hang (loop indefinitely).

e Hardto generate well formed data:
o E.g.,PNGfiles.

Fuzzing: Gen 2.a (Mutation based)

Input Corpus

Program
e}
e
Execution
Generation Control
Crash

(SIGSEGV)

l...ll
5
S0

Fuzzing: Gen 2.a

e Very effective at generating semi-structured inputs.

e Still not so effective at generating highly structured inputs:
o E.g,Cfiles.

Fuzzing: Gen 2.b (Generation based)

Program

q
Input Grammer / Dg:ac:::n
Model
Genera te b
Input Execution
Grammer

Generation Control

Crash
(SIGSEGV)

Fuzzing: Gen 2.b

e Very effective at generating complex inputs:

o Csmith: Generate syntactically valid but random C programs.

e Commercial tools:

o Peach. @
peach

e Need to manually write these input grammars:
o Domain Specific Language.
o Large: ~200 lines

Fuzzing: Gen 3 (Feedback guided Mutation based)

Input Corpus

Generation

™ Detection
Oracle
Pick Mutation %
Input(s) Input Execution
Control

Program

Crash
(SIGSEGV)

Interesting?

Feedback

No: Discard
input

Fuzzing: Gen 3

e Extremely effective at quickly generating well-formed inputs.

e Highly successful commercial grade tool:
o AFL (AFLPIlusPlus)

e Need away to capture feedback: Impacts performance.

Fuzzer Deep Dive : AFLPlusPlus

Based on American Fuzzy Lop (AFL) developed by Michat Zalewski
Coverage Feedback based Mutational Fuzzing.
Highly customizable, efficient and very well maintained.

Revolutionized fuzzing research:
o ~30paperssince 2015.

Found various (~200) bugs in well-maintained programs.

Instrumentation
Program

Input Corpus | - #

Detection
Oracle

-,
* Timeout
(SIGALRM)

.. L Crash
............................ (SIGSEGV)

Input(s) bitflips

Input Generation

New edges
covered?

forkserver

Execution Control

Coverage

bitmap

No: Discard
input

Yes: Add
input

A++;: Coverage Map

° Coverage choices: Precision Overhead
o Lineor Basic block coverage:
m Basic blocks executed.
o Edge coverage (used by A++):
m Edges (Basic block tuple) executed.
o Pathcoverage:

m Sequence of basic blocks executed.

Coverage choices

. . e Does Execution 1 and 2 have:
Execution 1 Execution 2
o Same basic block coverage?

o Same edge coverage?

o Same path coverage?

A++; Coverage Instrumentation

e Coverage map: Memory area in the program that stores coverage.

e Every basic block in all functions will be instrumented to update coverage map.

(Hopefully) Unique key
for each edge

cur_location = <COMPILE ME_RANDOM>

coverage_map [[cur_location A prev_location]++;

prev_location = cur_location >> 1;

A++;: Coverage Map

..instrs..
cl = x;
map[cl A pl]++;
pl = x >> 1;

— T

..instrs..
cl = y;
map[cl A pl]++;
pl =y > 1;

..instrs..
cl = z;
map[cl A pl]++;
pl = z >> 1;

—

..instrs..

map[cl A pl]++;
k >> 1;

= k;

Coverage Map

A++;: Coverage Map

..instrs..
cl = x;
map[cl A pl]++;
pl = x >> 1;

T

..instrs..
cl = y;
map[cl A pl]++;
pl =y > 1;

..instrs..
cl = z;
map[cl A pl]++;
pl = z >> 1;

\/

..instrs..

map[cl A pl]++;
k >> 1;

= k;

Coverage Map

------- .
z"k xz

A++: Coverage Map: Bucketized edge counts

e Edge counts are bucketized:

o E.g.,Coverage map of executions with loop counts that belong to the
same bucket will be considered the same.

< TATATATATACIACY,
=

Coverage Map

map
xMy

A++;: Coverage Map

e
(X

Has same
coverage
map as

(o™X
I

american fuzzy lop ++3.13a (default) [fast]

Using A++

e Instrumentation: Compile the target program
using afl compiler, i.e.,afl-cc:
o afl-cc <.c> -o instr_prog
o Does:
m Instrumentation to compute coverage.
m Addforkserver.

e Fuzzing: Startfuzzing instr_prog:
o afl-fuzz -i <inputs_folder> -o <output_folder> -- dinstr_prog

A++: Instrumentation

afl-cc <.c> -o instr_prog
e forkserver (constructor)afl-compiler-rt.o.c:

Setup coverage map (shared memory map).

Original Program

instr_prog while (1){

%

=—1 Coverage 1. Wait for command at FORKSRV_FD.
Instrumented Program 2. Oncereceived, fork and start executing main of

ﬁ return the original program:
fork() code ° Program would be writing to coverage map (shared memory).
1. Sends the return code through FORKSRV_FD + 1

1. setup coverage_map }

forkserver

t |

FORKSRV?FDl l FORKSRV_FD + 1

A++: Fuzzing

afl-fuzz -i <inputs_folder> -o <output_folder> -- 1dinstr_prog

 Shresven e afl-fuzz(src/afl-fuzz.c):

.....
. .,

o Setup(1):

2 START

/NORKSRV D] Send shared memory id.
3 Input data o Fuzzing Loop (2-3-4):

afl-fuzz }——> instr_prog

K_/ m 2.START
FORKSRV_FD + 1] 3. Input data (stdin or file)

4 return code

m 4. returncode (crashes or timeout)

A++; Fuzzing

fuzz target
instance(s)

u(\:\,c_?}—?‘"""-mm““-\::\ --------------
o™= . ~ read() T
,,,,,, input data
P file
f1f PN fork server
arl-Tuzz | &\ o
,0"&({& [| r/(() \
dataTwrlterA Writen A read()
mutation
engine , i\
T o execution trace o9
result analyzer shared memory -
reset

A++: Few drawbacks

e Effectiveness highly depends on the quality of initial test cases.
e Does not readily accepts grammar for inputs.

e Does not readily accepts other coverage metrics:
o We may want different coverage metric for functions:

m E.g,BBcoverage for foo, edge for bar, path for baz.

Fuzzing Challenges: Input Generation

i if (i == 345890
e Constrained Input: } S)

O Driller: Augmenting Fuzzing through Symbolic Execution [NDSS 2016] }

O Angora: Efficient Fuzzing by Principled Search [S&P 2018]

o REDQUEEN: Fuzzing with Input-to-State Correspondence [NDSS 2019]

e Structured Input: 1 typedef struct {

ISP_RT_BUF_CTRL_ENUM ctrl;
_isp_dma_enum_ buf_id;
ISP_RT_BUF_INFO_STRUCT *data_ptr;
ISP_RT_BUF_INFO_STRUCT *ex_data_ptr;
unsigned char *pExtend;

} ISP_BUFFER_CTRL_STRUCT;

o DIFUZE: Interface Aware Fuzzing for Kernel Drivers [CCS 2017]

2
3
4
O WEIZZ: Automatic Grey-Box Fuzzing for Structured Binary Formats [ISSTA 20] 2
7

Fuzzing Challenges: Coverage metrics

e |sPath Coverage always good?

“Be Sensitive and Collaborative: Analyzing Impact of Coverage Metrics in Greybox Fuzzing” [RAID 2019]

o “CollAFL: Path-Sensitive Fuzzing” [S&P 18]

Fuzzing Challenges: Input prioritization

e Some inputs are good than other inputs?

“Not All Coverage Measurements Are Equal: Fuzzing by Coverage Accounting for Input Prioritization” [NDSS 2020]

o “ParmeSan: Sanitizer-guided Greybox Fuzzing” [USENIX 2020]

Fuzzing Trends

2016

2017

2018

2019

DUt e . a 10u) e ——— il ! A l"Jmudu‘[IBI]
~{QuickFuzz @ [94]]-—I Concurency
TLS-Attacker @ [195] | |—{IFuzzer @ [213]) (RemelFuzzer [157]) (Fodor [161]) {GRR211)) O D00
NeuralFuzzer [62]
i Skyfire @ [217]
Digtool @ [168]
DIFUZE 8 64 i e WO oy) (crErzz @125
IMF & [99]
(AFLGo & [36] | Kernel
HB\M‘W: & (53] 4 @
A 56 i
CZ’;Z'?L a[[a:§1 Chopper & [210]
FairFuzz & [136)
L{CodeAichemist @ [100]) SZ[I%‘L’EE'B 2[22131 PeriScope B [196]) | g.sg:rn '?2;‘29]
Network File Kernel Concurrency File Kernel ‘
Black-box Grey-box White-box

The Art, Science, and Engineering of Fuzzing: A Survey

Fuzzing Trends

e Newdirections:

o ML to detect which bytes to mutate.

o Transform the program and make it easy to fuzz (t-fuzz).

o Combine different fuzzers: collabFuzz: A Framework for Collaborative Fuzzing [EuroSec 2021]
e Improvements:

o Usefancy techniques to improve different aspects of fuzzing.
e Fuzzingdifferent applications:

o File systems, Kernel drivers, loT devices, etc.

Fuzzing as a generic exploratory technique

e Fuzzingallows us to find inputs that has high probability to satisfy certain goal.

o Goal: Find more bugs:
m Feedback: Coverage.
o Goal: Find more temporal bugs (e.g., use-after-free, double-free):
m Feedback: Likelihood of input triggering malloc/free.
o Goal: Find concurrency bugs.
m Feedback: Number of threads invoked.
o Goal: Find denial-of-service bugs.
m Feedback: Time taken by the input (the more time the better).
o Goal: Type inference: Infer types for variables.
m Feedback: Number of type-checker error (the less the better).

