
Vulnerability Detection - Fuzzing

Aravind Machiry

Holistic Software Security

Credits: Prof. Mayur Naik, UPenn

● Automated test generation using random data.

○ Generate effective test cases, primarily using random data.

Fuzzing

Fuzzing: High Level Idea

Input
Generation

Execution
Control

Program
Detection

Oracle

● Generate inputs (mostly randomized) to be fed into the program:

○ Random source.

○ Mutating existing inputs.

○ Based on a given input grammar.

Input Generation

● Execute the program with a given input:

○ Regular command line programs: execve and stdin.

○ OS: System calls.

○ Network programs: Send over network.

○ Input file: Save the data into a file and provide file.

Execution Control

● Detection of interesting program behavior:

○ Program crash.

○ Race condition.

○ High execution time.

Detection Oracle

Fuzzing Success

Fuzzing Success: OSS-Fuzz
● Continuous fuzzing infrastructure hosted on the Google Cloud Platform

● OSS-Fuzz has discovered over 17,400 bugs from 2016 to 2019 in many
large projects (e.g. openssl, llvm, postgresql, git, firefox)

Modern Fuzzing
Techniques

Scalable,
Distributed
Execution

AFL LibFuzzer

Fuzzing: Gen 1 (Random data)

Input
Generation

Execution
Control

Program

Detection
Oracle

In
pu
t

In
pu
t

H@5^
23#t

/dev/random

Crash
(SIGSEGV)

Fuzzing: Gen 1
● Conducted by Barton Miller @ Univ of Wisconsin.

● 1990: Command-line fuzzer, testing reliability of UNIX programs.
○ Bombards utilities with random data

● 1995: Expanded to GUI-based programs (X Windows), network protocols, and system library APIs.

● Later: Command-line and GUI-based Windows and OS X apps.

Caused 25-33% of UNIX utility programs to crash (dump state) or hang (loop indefinitely).

● Hard to generate well formed data:
○ E.g., PNG files.

Fuzzing: Gen 2.a (Mutation based)

Input
Generation

Execution
Control

Program

Detection
Oracle

In
pu
t

In
pu
t

H@5^
23#t

Crash
(SIGSEGV)

Input

Input

Input

. . .

Mutation
Pick

Input(s)

Input Corpus

Fuzzing: Gen 2.a
● Very effective at generating semi-structured inputs.

● Still not so effective at generating highly structured inputs:
○ E.g., C files.

Fuzzing: Gen 2.b (Generation based)

Input
Generation

Execution
Control

Program

Detection
Oracle

Crash
(SIGSEGV)

Generate

Input Grammer /
Model

Grammer

Fuzzing: Gen 2.b
● Very effective at generating complex inputs:

○ Csmith: Generate syntactically valid but random C programs.

● Commercial tools:

○ Peach.

● Need to manually write these input grammars:
○ Domain Specific Language.
○ Large: ~200 lines

Fuzzing: Gen 3 (Feedback guided Mutation based)

Input
Generation

Execution
Control

Program

Detection
Oracle

In
pu
t

In
pu
t

H@5^
23#t

Crash
(SIGSEGV)

Input

Input

Input

. . .

MutationPick
Input(s)

Input Corpus

FeedbackInteresting?

Yes: Add
input

No: Discard
input

Fuzzing: Gen 3
● Extremely effective at quickly generating well-formed inputs.

● Highly successful commercial grade tool:
○ AFL (AFLPlusPlus)

● Need a way to capture feedback: Impacts performance.

Fuzzer Deep Dive : AFLPlusPlus
● Based on American Fuzzy Lop (AFL) developed by Michał Zalewski

● Coverage Feedback based Mutational Fuzzing.

● Highly customizable, efficient and very well maintained.

● Revolutionized fuzzing research:
○ ~30 papers since 2015.

● Found various (~200) bugs in well-maintained programs.

AFLPlusPlus (A++): Coverage guided

Input Generation Execution Control

Program

Detection
OracleIn

pu
t

In
pu
t

H@5^
23#t

Crash
(SIGSEGV)

Input

Input

Input

. . .

Mutations:
bitflips

splicling
….

Pick
Input(s)

Input Corpus

Coverage
New edges
covered?

Yes: Add
input

No: Discard
input

bitmap

forkserver
Timeout

(SIGALRM)

Instrumentation

A++: Coverage Map

● Coverage choices:

○ Line or Basic block coverage:

■ Basic blocks executed.

○ Edge coverage (used by A++):

■ Edges (Basic block tuple) executed.

○ Path coverage:

■ Sequence of basic blocks executed.

Precision Overhead

Coverage choices

Execution 1 Execution 2
● Does Execution 1 and 2 have:

○ Same basic block coverage?

○ Same edge coverage?

○ Same path coverage?

A++: Coverage Instrumentation

● Coverage map: Memory area in the program that stores coverage.

● Every basic block in all functions will be instrumented to update coverage map.

cur_location = <COMPILE_TIME_RANDOM>;

coverage_map[cur_location ^ prev_location]++;

prev_location = cur_location >> 1;

(Hopefully) Unique key
for each edge

A++: Coverage Map

..instrs..
cl = x;

map[cl ^ pl]++;
pl = x >> 1;

..instrs..
cl = y;

map[cl ^ pl]++;
pl = y >> 1;

..instrs..
cl = z;

map[cl ^ pl]++;
pl = z >> 1;

..instrs..
cl = k;

map[cl ^ pl]++;
pl = k >> 1;

1 ……. 0 0 1

x^y x^zz^k y^k

…….map

Coverage Map

A++: Coverage Map

..instrs..
cl = x;

map[cl ^ pl]++;
pl = x >> 1;

..instrs..
cl = y;

map[cl ^ pl]++;
pl = y >> 1;

..instrs..
cl = z;

map[cl ^ pl]++;
pl = z >> 1;

..instrs..
cl = k;

map[cl ^ pl]++;
pl = k >> 1;

0 ……. 1 1 0

x^y x^zz^k y^k

…….map

Coverage Map

A++: Coverage Map: Bucketized edge counts

x

y

n

x^y

…….map
Coverage Map

N times

1 2 3 4 5-7 8-15 16-31

● Edge counts are bucketized:

○ E.g., Coverage map of executions with loop counts that belong to the

same bucket will be considered the same.

...

A++: Coverage Map

+ +
Has same
coverage
map as

● Instrumentation: Compile the target program
using afl compiler, i.e., afl-cc:

○ afl-cc <.c> -o instr_prog
○ Does:

■ Instrumentation to compute coverage.
■ Add forkserver.

● Fuzzing: Start fuzzing instr_prog:
○ afl-fuzz -i <inputs_folder> -o <output_folder> -- instr_prog

Using A++

A++: Instrumentation

afl-cc
1. setup coverage_map

forkserver

fork()
return
code

FORKSRV_FD FORKSRV_FD + 1

afl-cc <.c> -o instr_prog

instr_prog

Coverage
Instrumented Program

Original Program

● forkserver (constructor) afl-compiler-rt.o.c:

Setup coverage map (shared memory map).

while (1) {

1. Wait for command at FORKSRV_FD.

2. Once received, fork and start executing main of

the original program:
● Program would be writing to coverage map (shared memory).

1. Sends the return code through FORKSRV_FD + 1

 }

A++: Fuzzing
afl-fuzz -i <inputs_folder> -o <output_folder> -- instr_prog

afl-fuzz instr_prog

FORKSRV_FD

FORKSRV_FD + 1

START

Input data

return code

Shared Mem
(Coverage Map)1

2

3

4

● afl-fuzz (src/afl-fuzz.c):

○ Setup (1):

■ Send shared memory id.

○ Fuzzing Loop (2-3-4):

■ 2. START

■ 3. Input data (stdin or file)

■ 4. return code (crashes or timeout)

A++: Fuzzing

● Effectiveness highly depends on the quality of initial test cases.

● Does not readily accepts grammar for inputs.

● Does not readily accepts other coverage metrics:

○ We may want different coverage metric for functions:

■ E.g., BB coverage for foo, edge for bar, path for baz.

A++: Few drawbacks

● Constrained Input:

○ Driller: Augmenting Fuzzing through Symbolic Execution [NDSS 2016]

○ Angora: Efficient Fuzzing by Principled Search [S&P 2018]

○ REDQUEEN: Fuzzing with Input-to-State Correspondence [NDSS 2019]

● Structured Input:

○ DIFUZE: Interface Aware Fuzzing for Kernel Drivers [CCS 2017]

○ WEIZZ: Automatic Grey-Box Fuzzing for Structured Binary Formats [ISSTA 20]

Fuzzing Challenges: Input Generation
if (i == 345890)
{
 …
}

● Is Path Coverage always good?

○ “Be Sensitive and Collaborative: Analyzing Impact of Coverage Metrics in Greybox Fuzzing” [RAID 2019]

○ “CollAFL: Path-Sensitive Fuzzing” [S&P 18]

Fuzzing Challenges: Coverage metrics

● Some inputs are good than other inputs?

○ “Not All Coverage Measurements Are Equal: Fuzzing by Coverage Accounting for Input Prioritization” [NDSS 2020]

○ “ParmeSan: Sanitizer-guided Greybox Fuzzing” [USENIX 2020]

Fuzzing Challenges: Input prioritization

Fuzzing Trends

The Art, Science, and Engineering of Fuzzing: A Survey

● New directions:

○ ML to detect which bytes to mutate.

○ Transform the program and make it easy to fuzz (t-fuzz).

○ Combine different fuzzers: CollabFuzz: A Framework for Collaborative Fuzzing [EuroSec 2021]

● Improvements:

○ Use fancy techniques to improve different aspects of fuzzing.

● Fuzzing different applications:

○ File systems, Kernel drivers, IoT devices, etc.

Fuzzing Trends

● Fuzzing allows us to find inputs that has high probability to satisfy certain goal.

○ Goal: Find more bugs:

■ Feedback: Coverage.

○ Goal: Find more temporal bugs (e.g., use-after-free, double-free):

■ Feedback: Likelihood of input triggering malloc/free.

○ Goal: Find concurrency bugs.

■ Feedback: Number of threads invoked.

○ Goal: Find denial-of-service bugs.

■ Feedback: Time taken by the input (the more time the better).

○ Goal: Type inference: Infer types for variables.

■ Feedback: Number of type-checker error (the less the better).

Fuzzing as a generic exploratory technique

